Orbit response matrix measurements and model calibration for the Fermilab Booster

Alexey Petrenko, Meghan McAteer

Model calibration using optimization (penalty) function:

$$F = \sum_{i,j} \left[\left(\frac{\partial x_i}{\partial \theta_j} \right)_m - \left(\frac{\partial x_i}{\partial \theta_j} \right)_t \right]^2 \frac{1}{\sigma_{ij}^2}$$
Measured response Model Measured actions.

The objective is to find a set of hidden model parameters (focusing errors, BPM calibrations etc.) which minimizes *F.* SVD-based optimization is typically used.

Measurement accuracy

Booster orbit response measurements:

Resulting BPM and corrector calibrations:

Resulting focusing errors:

 $\frac{1}{1}$ $\frac{1}$

Betatron tunes: (measured tunes were not used in model calibration)

Betatron tunes vs time: (assuming that focusing errors do not change with time)

=> Focusing errors do change with time!

Betatron coupling: (measured tunes were not used in model calibration)

Before coupling correction:

After coupling correction:

Beta-function from quadrupole scans: (coupling is corrected and tunes are separated)

The difference is probably due to quadrupole calibration errors

Conclusions:

- Booster optics is very well reproducible from pulse to pulse => accurate orbit and tune response measurements are possible
- Precise Booster model was obtained for t=6 ms using orbit response matrix (LOCO) technique
- The obtained model was successfully used to correct coupling in the Booster
- In order to understand the nature of focusing and calibration errors orbit response matrix (and if possible tune responses) should be measured during whole ramp